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Abstract

The classic experimental modal analysis (EMA) is a well-known pro-
cedure for determining the modal parameters. The less frequently used
strain EMA is based on a response measurement using strain sensors. The
results of a strain EMA are the modal parameters, where in addition to
the displacement mode shapes the strain mode shapes are also identified.
The strain EMA can be used for an experimental investigation of a stress-
strain distribution without the need to build a dynamical model. It can
also be used to determine the modal parameters when, during modal test-
ing, a motion sensor cannot be used and so a strain sensor is used instead.
The displacement and strain mode shapes that are determined with the
strain EMA are not mass normalised (scaled with respect to the orthog-
onality properties of the mass-normalised modal matrix), and therefore
some dynamical properties of the system cannot be obtained. The mass
normalisation can be made with the classic EMA, which requires the use
of a motion sensor. In this research a new approach to the mass normal-
isation in the strain EMA, without using a motion sensor, is presented.
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It is based on the recently introduced mass-change structural modifica-
tion method, which is used for the mass normalisation in an operational
modal analysis. This method was modified in such a way that it can be
used for the mass normalisation in the strain EMA. The mass-normalised
displacement and strain mode shapes were obtained using a combination
of the proposed approach and the strain EMA. The proposed approach
was validated on real structures (beam and plate).

1 Introduction

In a modal analysis the displacement mode shapes (eigenvectors) are usually
subjected to a scaling procedure, referred to as mass-normalisation, with respect
to the orthogonality properties of the mass-normalised modal matrix [1, 2].
When the displacement mode shapes of a dynamical system are not scaled in
this manner they cannot be used for the calculation of the mass and stiffness
matrices [1, 2, 3]. The mass-normalised displacement mode shapes of a real
structure are usually determined with an experimental modal analysis (EMA) [1,
2, 4, 5], which is also used to determine the other modal parameters. The
modal parameters can also be determined with the less-frequently used strain
EMA [3, 6], where the response is measured with a strain sensor. In addition
to the modal parameters, the strain mode shapes can also be determined [3, 6].
However, in the strain EMA the mass normalisation of the displacement and
the strain mode shapes cannot be performed [3, 6, 7].

Some of the early researches relating to strain EMA include [3, 6, 8, 9, 10].
Young and Joanides [9] predicted the strains from a modal model that was de-
rived from test data. Hillary and Ewins [8] indirectly determined the external
dynamic forces with a strain measurement. Kamrower and Pakstys [10] used
the strain values that were obtained from a modal test using accelerometers and
strain gauges to predict the strains under the impact loadings. The sound the-
oretical and practical aspects of the strain EMA were presented by Bernasconi
and Ewins [3, 6]. The strain EMA can be used for an experimental investigation
of the stress-strain distribution of a real structure without building a mathemat-
ical model [11]. The strain EMA should also be applied when a response cannot
be measured with a motion sensor and a strain sensor can be used instead (i.e., in
a displacement mode shape node with no motion, where the strains are not zero,
e.g., the area near the clamped boundary condition). In some circumstances the
strain sensor should be used because the motion sensor is inadequate (e.g., in
a magnetic flux environment the fiber Bragg grating strain sensor [12] can be
used instead of accelerometers that are often sensitive to magnetism [13]). A
drawback of the strain EMA is that the displacement and strain mode shapes
that are obtained from the strain EMA are not mass normalised [3, 6, 7]. They
only have relative information about the mass-normalised displacement and the
strain mode shapes. Some researchers proposed a mass normalisation with the
classic EMA [3, 6, 11], that requires an additional response measurement with
a motion sensor. However, when the measurement of a response with a motion
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sensor in the strain EMA is not possible, the mass-normalisation procedure can-
not be experimentally performed.

Similar problems regarding mass normalisation also occur in the field of
Operational Modal Analysis (OMA). The OMA [14] is an output-only modal
method, where the excitation is performed with the ambient forces, and there-
fore only the relative values of the displacement mode shapes are obtained. In
the OMA the mass normalisation of the displacement mode shapes can be made
with the recently introduced, sensitivity-based, mass-normalisation methods,
which are based on the natural frequency shifts due to a structural modifica-
tion [15]. Sensitivity-based mass normalisation where the structure modification
is performed by adding masses was first presented by Parloo et al. [15] and later
also by others, e.g., [16, 17, 18, 19]. This method is usually referred to as the
mass-change strategy. The structure modification can also be performed by
the stiffness changes [20]. Khatibi et al. [21] found that adding masses has a
small effect on the first natural frequency. The effect of a structure modifica-
tion resulting from the stiffness change is higher; therefore, they proposed the
mass-stiffness change strategy, which produces more accurate results than the
mass-change strategy, especially for the first mode.

In this research a new approach for the mass-normalisation of the displace-
ment and strain mode shapes in a strain EMA is proposed that eliminates the
need for a motion sensor [3, 6, 11]. It is based on the recently introduced mass-
change strategy for OMA [15, 16, 18], which was modified in such a way that it
was applicable to the strain EMA. The mass-normalised displacement and strain
mode shapes were obtained by integrating the modified mass-change strategy
and the strain EMA. The effects on the accuracy of the proposed approach
have also been researched. The validation of the proposed approach involved
experimental tests on a free-free supported beam and plate.

The paper is organized as follows: In Section 2.1 the theory of the strain
response of a dynamical system is presented. This is followed by the strain EMA
theory in Section 2.2 and the specification of the problems regarding the mass
normalisation in Section 2.3. In Section 2.4 and 2.5 the mass-change strategy
for the OMA and the modified mass-change strategy for the strain EMA are
presented, respectively. The effects on the accuracy of the proposed approach
are analyzed in Section 2.6. Section 3 presents the experimental validation of
the proposed approach. The conclusion follows in Section 4.

2 Theoretical background

2.1 The strain response of a dynamical system

The strain response of a dynamical system will be derived from the motion
response. The motion steady-state response X(ω) of the hysteretically propor-
tionally damped dynamical system can be written as [1, 2]:
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X(ω) = Φ
[rω2

r(1 + i ηr)− ω2
r
]−1

ΦT F(ω) = H(ω)F(ω), (1)

where Φ is the modal matrix (matrix of mass-normalised displacement mode
shapes), ωr are the natural frequencies, ηr are the damping loss factors, F(ω)
is the vector of the excitation force, H(ω) is the receptance matrix and [rr]
denotes a diagonal matrix.

To research the system response with respect to the strains the operator S
is introduced [3, 22]:

S =
1

2
(∇+∇T) (2)

where ∇ is the linear differential operator in the space domain. S con-
verts the displacement field to the strain field. When S is applied to the rth
mass-normalised displacement mode shapeΦr, the mass-normalised strain mode
shape Φε

r is obtained [3, 7, 23]:

Φε
r = SΦr (3)

where Φε
r represents strains corresponding to Φr. Applying the operator S

to Eq. (1) results to the strain steady-state response Xε(ω) [3, 7, 23]:

Xε(ω) = Φε
[rω2

r(1 + i ηr)− ω2
r
]−1

ΦT F(ω) = Hε(ω)F(ω) (4)

where Hε(ω) is the strain Frequency-Response Function (FRF) matrix and
Φε is the matrix of mass-normalised strain mode shapes. Hε(ω) can be writen
as [11]:

Hε(ω) =
N∑
r=1

rA
ε

ω2
r − ω2 + i ηr ω2

r

(5)

where rA
ε is the strain modal constants matrix, corresponding to the rth

mode and can be written as:

rA
ε =



ϕε
1rϕ1r · · · ϕε

1rϕkr · · · ϕε
1rϕNdr

...
. . .

...
. . .

...
ϕε
jrϕ1r · · · ϕε

jrϕkr · · · ϕε
jrϕNdr

...
. . .

...
. . .

...
ϕε
Nsr

ϕ1r · · · ϕε
Nsr

ϕkr · · · ϕε
Nsr

ϕNdr


Ns×Nd

(6)

where ϕε
jr and ϕkr are the components of Φε

r and Φr, respectively. Nd and
Ns are the sizes of Φr and Φε

r, respectively. Eq. (6) shows that rA
ε
jk ̸=rA

ε
kj ;

therefore, Hε is not symmetric (Hε
jk ̸=Hε

kj) . Hε is generally not a square
matrix [11].
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2.2 Strain EMA

The strain EMA can be used for determining the dynamical properties of a real
structure, similar to the classic EMA [3, 6]. During the strain modal testing a
structure is excited with a known force at the structure point k and the response
is determined with a strain measurement at the point j. From the time input-
output signals the strain FRFHε

jk is obtained using the same FRF estimators [2]
as in the classic EMA. When the information about the displacement and the
strain mode shapes need to be obtained at least one row and one column of the
strain FRF matrix need to be experimentally determined [11].

The identification of the natural frequencies and the damping is performed
in a similar way as in the classic EMA [11]. The results of an indirect (modal)
identification method [2] are the natural frequencies, the damping [24], the strain
modal constants and their phases for all the measured strain FRF. The strain
modal constants that are identified from the jth row and the kth column of the
strain FRF matrix are denoted as rA

ε
j = ϕε

jr Φr and rA
ε
k = Φε

r ϕkr, respectively
(see Eq. (5) and (6)). rA

ε
j and rA

ε
k contain the information about Φr and Φε

r,
respectively.

2.3 Problems regarding the mass normalisation in the strain
EMA

The displacement and strain mode shapes as a result of the strain EMA are
not mass-normalised [3]. They are scaled by ϕε

jr and ϕkr, respectively (see
Eq. (5) and (6)).

In the classic EMA the mass normalisation is performed by taking into ac-
count the interrelation of the modal constants, which is described by the modal
constant’s consistency equations [1, 2]:

rAjk = ϕjr ϕkr (7)

rAjj = (ϕjr)
2 or rAkk = (ϕkr)

2 (8)

where rAjk is the motion modal constant of the receptance between the
response and the excitation structure points j and k, respectively. When the
direct motion FRF is measured the ϕjr can be determined from the identified
modal constant with Eq. (8) and used for a calculation of the mass-normalised
displacement mode shapes Φr [25].

In the strain EMA the modal constants are not interrelated like in the classic
EMA (Section 2.1); therefore, the mass normalisation of the displacement and
the strain mode shapes cannot be performed [3]. To calculate the Φr and Φε

r , an
artificial mass normalisation has to be performed in the strain EMA [3, 6, 7, 11].
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2.4 Mass normalisation using the mass-change strategy in
the OMA

In this research the mass normalisation in the strain EMA is performed with the
mass-change strategy that is normally used for the mass normalisation of the
displacement mode shapes in the OMA [15, 19]. It is based on the sensitivity of
the modal parameters. The modal sensitivity of the eigenvalue ∆ (ωA,r)

2 and
the sensitivity of the eigenvector ∆ΦA,r are written as [2]:

∆(ωA,r)
2 ≈

Np∑
i=1

∂(ωA,r)
2

∂pi
pi (9)

and

∆ΦA,r ≈
Np∑
i=1

∂ΦA,r

∂pi
pi (10)

where pi is a generic parameter used to describe the dynamic model. (ωA,r)
2

and ΦA,r are functions of pi.
The process of the mass-change strategy for the OMA is shown in Fig. 1.

First, the OMA is performed on an original structure to determine the natural
frequencies ωr, the unnormalised displacement mode shapes Ψr and the damp-
ing. This is followed by the structure modification by attaching the lumped
masses, which leads to a change of the natural frequencies [15]. The strategy of
the structure modification will be discussed later. Next, the OMA is performed
again on the modified structure to determine the natural frequencies ωm,r and
the unnormalised displacement mode shapes Ψm,r of the modified structure.
Finally, the OMA results of an original and a modified structure are used for
the calculation of the scaling factors αr, which are used for the calculation of
Φr. The relation between Ψr and Φr is expressed as [15, 18]:

Φr = αr Ψr (11)

Several approaches have been developed for the calculation of the scaling
factors. Some of them are considered in this article. Parloo et al. [15] developed
an approach that uses a first-order approximation for the sensitivity of the
natural frequencies of lightly-damped structures. It is defined as:

αr =

√
2(ωr − ωm,r)

ωr Ψ
T
r ∆mΨr

(12)

where ∆m is the mass-change matrix. The application of this expression
requires small frequency shifts and therefore small structure modifications. The
authors suggest mass changes of around 5 %. Bricker and Anderson [16] pre-
sented an expression which is derived directly from equations of motion. It is
defined as:
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Operational modal analysis

Calculation of scaling
factors

ORIGINAL
STRUCTURE

MODIFIED
STRUCTURE

Operational modal analysis

Mass-normalised displacement
mode shapes

Fig. 1: The process of the mass-change strategy in the OMA [19]

αr =

√
(ω2

r − ω2
m,r)

ω2
m,r Ψ

T
r ∆mΨr

(13)

This expression should be used when the structure modification results only
in the frequency shifts and the displacement mode shapes changes are small or
zero. Aenlle et al. [18] presented an expression that considers the displacement
mode shapes before and after the modification:

αr =

√
(ω2

r − ω2
m,r)

ω2
m,r Ψ

T
r ∆mΨm,r

(14)

They performed many simulations where the modification was performed
with the randomly distributed masses. The results showed that Eq. (14) gives
more accurate results than Eq. (13) when the displacement mode shapes are
changed after the modification.

2.5 Mass normalisation with a mass-change strategy for
the strain EMA

The mass-change strategy for the OMA was modified for use in the mass nor-
malisation in the strain EMA. The procedure of the mass-change strategy for
the strain EMA (Fig. 2) is similar to that in the OMA (Section 2.4).

First, the strain EMA is performed on an original structure to determine the
information about displacement mode shapes rA

ε
j , the strain mode shapes rA

ε
k,

the natural frequencies ωr and the damping of the structure. The unnormalised
displacement and strain mode shapes are identified from the jth row and the kth
column of the strain FRF matrix, respectively (Section 2.2). Then the structure
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Strain EMA

Calculation of th
strain mode shape
j component of

mass-normalised

Mass-normalised strain and
displacement shapesmode

ORIGINAL
STRUCTURE

MODIFIED
STRUCTURE

Strain EMA

Fig. 2: The process of the mass-change strategy in the strain EMA

modification is performed in the same way as in the mass-change strategy for the
OMA. Next, the strain EMA is performed on a modified structure to determine
the information about the displacement mode shapes rA

ε
m,j and the natural

frequencies ωm,r of the modified structure.
Finally, the calculation of the scaling factors for the mass normalisation in

the strain EMA follows. Replacing Ψr in Eq. (11) with the identified displace-
ment mode shape (unnormalised) rA

ε
j leads to the relation:

αr = (ϕε
jr)

−1 (15)

which shows, that the scaling factor for the rth mode is the jth inverse
component of the mass-normalised strain mode shape Φε

r . The expressions for
the calculation of the scaling factors using the mass-change strategy (Section 2.4)
are modified for the calculation of ϕε

jr. By considering the relation (15) the
Eq. (12-14) can be rewritten as:

MCϕ
ε
jr =

√
ωr (rA

ε
j)

T ∆m (rA
ε
j)

2 (ωr − ωm,r)
, (16)

MCϕ
ε
jr =

√
ω2
m,r (rA

ε
j)

T ∆m (rA
ε
j)

(ω2
r − ω2

m,r)
, (17)

and

MCϕ
ε
jr =

√
ω2
m,r (rA

ε
j)

T ∆m (rA
ε
m,j)

(ω2
r − ω2

m,r)
(18)

where MCϕ
ε
jr is the jth component of Φε

r that is estimated with the mass-
change strategy for the strain EMA. Regarding the variability of the mass
changes, the application possibilities of Eq. (16), Eq. (17) and Eq. (18) are
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the same as for Eq. (12), Eq. (13) and Eq. (14), respectively. MCϕ
ε
jr is used for

a determination of the mass-normalised displacement and strain mode shapes
by using the following equations:

Φr = ± rA
ε
j

MCϕε
jr

(19)

Φε
r = ± rA

ε
k MCϕ

ε
jr

rAε
jk

(20)

In general, the sign of Φr can be positive or negative [1, 2]. To determine
the Φε

r which are orientated corresponding to Φr the sign in Eq. (20) has to be
the same as in Eq. (19).

2.6 Accuracy analysis of the mass-change strategy for the
strain EMA

The effects on the accuracy of the results of the mass-change strategy for OMA
has been well researched [15, 16, 19, 20]. In [15, 16] the accuracy was researched
especially regarding the quality of the modal parameter identification. The
importance of the magnitude, the location and the number of attached masses
was shown in [19] and experimentally investigated in [20]. In this section the
effects on the accuracy of the proposed approach will be researched regarding
the quality of the modal parameter identification and also the parameters of the
structure modification.

2.6.1 The quality of modal parameter identification

The relative error as a result of the uncertainty in the identified natural fre-
quencies is estimated by differentiating Eq. (17) with respect to the frequency
ratio ηω = ωr

ωm,r
(see [19]):

MCεϕε
jr

=
δMCϕ

ε
jr

MCϕε
jr

= − η2ω
η2ω − 1

δ ηω
ηω

=
η2ω

η2ω − 1

(
δ ωm,r

ωm,r
− δ ωr

ωr

)
(21)

where MCεϕε
jr

is the relative error of MCϕ
ε
jr,

δ ηω

ηω
is the relative error of the ηω,

δ ωr

ωr
and

δ ωm,r

ωm,r
are the relative errors of the natural frequencies corresponding

to the original and modified structure, respectively. Eq. (21) shows that the
frequency ratio ηω should be large in order to minimize the effects of the errors
of the estimated natural frequencies.

The relative error MCεϕε
jr

is also analyzed with respect to the relative error of

the displacement mode shapes rA
ε
j (a result of the strain EMA). It is estimated

by the differentiation of Eq. (17) with respect to the component of the identified
strain modal constant rA

ε
ji at the ith location of the attached mass (see [15]):
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MCεϕε
jr

=

Nm∑
i=1

(
(rA

ε
ji)

2 ∆mi

(rA
ε
j)

T ∆m (rA
ε
j)

δ(rA
ε
ji)

(rAε
ji)

)
(22)

where Nm is the number of attached masses,
δ(rA

ε
ji)

(rAε
ji)

is the relative error in

rA
ε
ji . Eq. (22) shows that when the components of rA

ε
j are subjected to a

similar relative error ε, the relative error of MRϕ
ε
jr will be approximately ε [15].

2.6.2 Strategy of adding the masses

The accuracy of the mass change-strategy for strain EMA also depends on the
strategy for attaching the masses [19, 20]. One one hand, the mass change
should be performed in a way that ensures the large frequency shifts in order
to perform quality natural frequencies identification and minimize the effects of
the uncertainties (see Eq. 21). To analyze the natural frequency changes the
frequency ratio η2ω is derived from Eq. (17):

η2ω = 1 +

(
1

MRϕε
jr

)2

rA
εT
j ∆m rA

ε
j . (23)

The expression shows that the natural frequency shifts are a maximum when
∆m is maximized and when the masses are attached to the peaks and valleys
of the considered mode [19].

On the other hand, the displacement mode shapes must not be changed after
the modification (see [16, 19, 20]). In [19] it is shown that the displacement mode
shape’s changes are minimized, when the mass-change matrix ∆m is relatively
small and proportional to the mass matrixm of a dynamical system. In practice,
it is important to ensure that the number of masses is equal or higher than the
number of peaks and valleys of the considered mode shape [19]. The listed
facts show the complexity of performing the optimal mass-change modification;
therefore, the attaching of the masses must be carefully studied with respect to
the number, the location and the magnitude of the attached masses.

3 Experimental validation

In order to validate the proposed approach the experimental tests on a beam
and a plate structure were performed.

3.1 Experimental tests on a beam structure

In the first case the experimental tests were made on a steel, 1-m-long, free-free
supported beam with a rectangular, 0.01× 0.03m cross-section (Fig. 3 and 4).
The free-free boundary conditions were achieved by suspending the structure
from thin ropes (not visible in Fig. 3). Only the bending modes in the plane xy
were considered, which results in displacements in the y-direction and normal
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strains in the x-direction [26]. The experiment was performed as follows. First,
the strain EMA was performed and then the mass-normalisation procedure with
the mass-change strategy for the strain EMA followed. The obtained results
were compared to the results of the finite-element method (FEM) and then
used for a reconstruction of the measured accelerance.

accelerometer

acquisition chasis with

acquisition cards

z

xy

modal hammer

strain gauges

Fig. 3: The strain modal testing on the free-free supported beam

3.1.1 Strain EMA

During the strain modal testing the response was measured in the x-axis (Fig. 4)
with calibrated strain gauges (PCB 740B02), while the structure was excited
with a modal hammer (B&K Type 8206-002) in the y-axis. First, the responses
were measured at structure point 4 (Fig. 4), while the structure was excited
at the points 1-11 to determine the 4th row of the 11 × 11 sized strain FRF
matrix (the number of the rows and columns is the same in this case). Then,
the responses were measured at the points 2, 4, 6, 8, 10, while the structure was
excited at the point 4 to determine the 4th column of the strain FRF matrix.
With the five strain gauges that were attached to the structure, only the 2nd,
4th, 6th, 8th and 10th elements of the 4th column were measured.

The tested structures are lightly damped; therefore, the modal parameter
identification was performed with the Ewins-Gleeson identification method [25],
which was developed for such structures, assuming the hysteretic damping
model. For such systems the mass-normalised displacement mode shapes are
taken to be real (with phase angles of 0 or 180 degrees) [2]; therefore, they
match the calculated (numerical) ones. As discussed in Section 2.2, the identified
strain modal constants contain only the relative information about the mass-
normalised displacement and the strain mode shapes. Fig. 5 shows the difference
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1 m z

y

z

x

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

y x

0.01 m

0
.0

3
 m

Fig. 4: The tested beam

between the mode shapes that were identified with the strain EMA and the cal-
culated ones by FEM (mass-normalised). Fig. 5 (a,c,e,g,i) and Fig. 5 (b,d,f,h,j)
show the first five displacement and strain mode shapes, respectively. The
figure shows that the experimentally determined mode shapes are not in agree-
ment with the calculated ones. The discrepancies are the result of the incorrect
scaling. Therefore, the experimentally determined mode shapes match the cal-
culated ones only in the mode shape nodes (e.g., the structure point 6 at the
2nd displacement and strain mode shapes-Fig. 5 (c) and Fig. 5 (d)).
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Fig. 5: The first five displacement (a,c,e,g,i) and strain (b,d,f,h,j) mode shapes:
determined with the strain EMA (unnormalised) “×”, calculated using FEM
(mass normalised) “—”
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3.1.2 Mass normalisation with the mass-change strategy for the strain
EMA

The displacement and strain mode shapes were mass normalised using the pro-
posed mass-change strategy for the strain EMA. The procedure is described in
Section 2.5. The strain EMA for the original structure follows the structure
modification by attaching magnets to the structure points 1-11 (Fig. 4). Each
of the magnets weighted 11.6 g, and the total mass of the magnets was approx-
imately 5.4 % of the original structure weight. After the structure modification
the strain EMA was performed for the modified structure once again. The nat-
ural frequencies of the modified beam were decreased by the added masses. The
change is evident from Table 1, where fr and fm,r are the natural frequencies of
the original and modified structures, respectively, and δr is the relative change
between the natural frequencies of the modified and original structures. As is
clear from Section 2.2 the displacement mode shapes that are determined using
the strain EMA are scaled by the jth component of the strain mode shape ϕε

jr.
To calculate ϕε

jr one of the Eq. (16)-(18), which are presented in Section 2.5,
can be used. In order to choose the appropriate approach a comparison of the
displacement mode shapes before and after the structure modification was per-
formed using the modal assurance criterion (MAC) [27]. The results of the MAC
analysis (Fig. 6) show that the displacement mode shapes were not significantly
changed by the structure modification; therefore, Eq. (17) was used. MCϕ

ε
4r

were calculated for all the modes and used to determine the mass-normalised
displacement and the strain mode shapes Φr and Φε

r with Eq. (19) and (20).
The Φr and Φε

r that were determined with the proposed approach are plotted
together with the calculated ones using the FEM in Fig. 7. Fig. 7 (a,c,e,g,i) and
Fig. 7 (b,d,f,h,j) show the first five displacement and strain mode shapes, re-
spectively. The Figure shows that the experimental results match the calculated
ones well.

Table 1: The natural frequencies of the original and the modified beams
r fr[Hz] fm,r[Hz] δr
1 52.85 51.05 -3.41 %
2 145.45 140.45 -3.44 %
3 285.0 274.7 -3.61 %
4 471.1 454.2 -3.59 %
5 701.25 675.05 -3.74 %

The modal parameters that were determined with the proposed approach
were used to reconstruct the direct accelerance at point 4, denoted as HA

44. The
reconstruction was also performed with the modal parameters that were identi-
fied from the measured accelerance HA

44. The response was measured with the
accelerometer B&K 4507B004 (Fig. 3). In Fig. 8 both reconstructed FRFs are
shown together with the measured one. The reconstructed accelerances have
approximately the same amplitudes and describe well the resonance peaks. The
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Fig. 6: The correlation between the displacement mode shapes of the original
and the modified beams

discrepancy out of the resonance is a consequence of the residual modes that are
not taken into account. Furthermore, the effects of the residual modes were esti-
mated from the measured HA

44 using the extended Ewins-Gleeson identification
method [25]. When the residues were taken into account both the reconstructed
accelerances match the measured one better (Fig. 9).

The comparison with the results of the FEM and the accelerance reconstruc-
tion show the validity of the proposed approach for beam structures.
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Fig. 8: The direct accelerance; measured (grey “—”), reconstructed from the
measured accelerance (black “- - -”) and from the proposed approach (black “—
”)
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Fig. 9: The direct accelerance; measured (grey “—”), reconstructed (considering
the residues) from the measured accelerance (black “- - -”) and from the proposed
approach (black “—”)
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3.2 Experimental testing on a plate structure

The second experimental case was performed on a steel, 0.4× 0.32× 0.003 m
sized, free-free supported plate (Fig. 10).

We considered the first five modes, which vibrate out of plane xy and result
in the normal and shear strains (stresses) [28]. The application of the pro-
posed approach (Section 2.5) was shown by determining of the mass-normalised
displacement mode shapes and the normal components of the mass-normalised
strain mode shapes in the x-direction (Φεxx

r ) and the y-direction (Φ
εyy
r ).

The strain modal testing was performed with the same equipment as in the
case of the beam (Section 3.1). To obtain the information about the displace-
ment mode shapes the plate was excited with the modal hammer at the points
1-30 (Fig. 10) and the response was measured at the point 31. The information
about the strain mode shapes was obtained by exciting the structure at the
point 26 and measuring the normal x-components of the strains at the points
6, 11, 16, 21, 31 and the normal y-components at the points 2-4. The modal
identification was performed in a similar way as in the case of the beam. Fol-
lowed the mass normalisation by the proposed approach. In order to ensure
that the mass change will not affect the displacement mode shapes, the mag-
nets were attached as follows. At the points (7-9, 12-14, 17-19, 22-24), (2-4,
6, 10, 11, 15, 16, 20, 21, 25, 27-29) and (1, 5, 26, 30) the 11.6 g, 5.1 g and
3.6 g magnets were attached to the structure, respectively. The total mass of
the magnets was approximately 6.6 % of the original structure’s weight. The
natural frequencies before and after the modification, which are denoted as fr
and fm,r, respectively, are listed in Table 2. The relative frequency shifts are
denoted as δr. The modification did not affect the displacement mode shapes.
This was proved by the MAC comparison of rA

ε
j and rA

ε
m,j , where the lower

diagonal element of the MAC matrix was approximately 0.96. We used Eq. (17)
for the calculation of MCϕ

ε
31r, which were then used for the mass-normalisation.

The results of the testing were the components of Φr at the points (1-30) and
additionally, the components of Φεxx

r and Φ
εyy
r at the points (6, 11, 16, 21, 31)

and (2-4), respectively.

Table 2: The natural frequencies of the original and the modified plates
r fr[Hz] fm,r[Hz] δr
1 80.1 77.4 -3.4 %
2 98.2 94.6 -3.7 %
3 167.1 160.1 -4.2 %
4 191.8 184.8 -3.6 %
5 224.2 215.1 -4.1 %

The experimental results were compared to the results of the FEM. First,
we compared the experimentally determined Φr to the calculated ones. The
relative comparison was performed by MAC analysis, where the lower diagonal
element of the MAC matrix was approximately 0.96. The graphical comparison
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Fig. 10: The experimental testing on the free-free supported plate

was performed by plotting the experimentally determined Φr and the calculated
ones together in Fig. 11. Fig. 11 (a,c,e,g,i) showΦr for the structure points 1-30.
The detailed plots are shown in Fig. 11 (b,d,f,h,j), where only the components
of Φr at the location y = −0.08 m are plotted. Then, the experimentally
determined components of Φε

r were compared to the calculated ones by FEM
in Fig. 12. Fig. 12 (a,c,e,g,i) show the Φεxx

r at the location y = −0.16 m.
Fig. 12 (b,d,f,h,j) show Φεyy

r at the location x = −0.2 m. The experimentally
determined components of Φr and Φε

r are in good agreement with the calculated
ones, although there are some discrepancies. These come from several error
sources: the measuring errors, the local stiffness changes due to the strain gauges
that are attached to the relatively thin sheet metal and the deviations of the
stain-gauge attachment regarding the position and the angle.

The results of the proposed approach were used for the reconstruction of
the direct accelerance at point 26 (similarly as in the Fig. 9). It was also re-
constructed from the modal parameters that were identified from the measured
accelerance. The reconstructed accelerances are plotted together with the mea-
sured one in Fig. 13. Both reconstructed accelerances are in good agreement
with the measured one. The results of the experiment show the validity of the
proposed approach for the plate structure.

4 Conclusion

In this research we considered the problems relating to mass normalisation
(scaling) of displacement and strain mode shapes in the strain EMA. The mass-
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Fig. 11: The first five mass-normalised displacement mode shapes ((a,c,e,g,i)-
all the measuring points, (b,d,f,h,j)-points at y=-0.08m) ; calculated (—) and
experimentally determined (×)

normalised displacement and strain mode shapes, are in the strain EMA, usually
experimentally obtained in combination with the classic EMA, where a direct
motion FRF has to be measured. A new approach to mass normalisation in the
strain EMA is presented, which requires only the strain FRF measurements.
The approach enables a mass-normalisation procedure in the strain EMA even
when a motion sensor cannot be used. The proposed approach is based on the
recently introduced mass-change strategy for mass normalisation in the OMA.
In this research the mass-change strategy was modified for use with the strain
EMA. The mass-normalised displacement and strain mode shapes were obtained
by a combination of the strain EMA and the proposed approach. The accuracy
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of the proposed approach was researched with respect to the quality of the modal
parameter identification and the number, the magnitude and the location of the
attached masses.

The approach was experimentally validated by tests on free-free supported
beam and plate structures. We obtained the mass-normalised displacement and
strain mode shapes of the structures, which match the shapes that were calcu-
lated with the FEM. The results of the proposed approach were also used for the
reconstruction of the measured direct accelerances. The reconstructed acceler-
ances are in good agreement with the reconstructed ones from the results of the
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Fig. 13: The direct accelerance; measured (grey “—”), reconstructed from the
measured accelerance (black “- - -”) and from the proposed approach (black “—
”)

classic EMA and also with the measured ones. The results of the experimental
tests show the validity of the proposed approach.
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